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1.1.1 Introduction 
 
Seismic reflection the primary tool used in petroleum exploration and production, but use 
in geothermal exploration is less standard, in part due to cost but also due to the 
challenges in identifying the highly-permeable zones essential for economic 
hydrothermal systems [e.g. Louie et al., 2011; Majer, 2003]. Newer technology, such as 
wireless sensors and low-cost high performance computing, has helped reduce the cost 
and effort needed to conduct 3D surveys. The second difficulty, identifying permeable 
zones, has been less tractable so far. Here we report on the use of seismic attributes from 
a 3D seismic survey to identify and map permeable zones in a hydrothermal area.  
 
The simplest form of seismic interpretation uses the seismic amplitudes as a function of 
time (or depth) to estimate sub-surface structure. A more sophisticated technique uses 
alternate characteristics (attributes) of the seismic traces to infer additional constraints on 
the sub-surface. Considerable work in this area has been conducted by the petroleum 
industry in refining this type of analysis (Barnes, 1999; Barnes 2006, Chopra and 
Marfurt, 2007, Marfurt et al., 1998) and it has led in some cases to significant 
improvement in exploration success rates. As the cost of a seismic reflection survey is 
generally less than that of a single test drill hole, an improved ability to detect and assess 
geothermal resources would lead to lower costs in geothermal exploration and 
production. 
 
The primary goal in geothermal exploration is to find a location with sufficient 
temperature and flow rate. Seismic wave propagation is largely insensitive to temperature 
variations and therefore indirect effects such as related changes in lithology or fractures 
must be found. Mineralization associated with water flow may increase velocities [Majer, 
2004] while fractures are expected to decrease velocities and increase attenuation 
[Nakagone et al., 1998]. The resolution of seismic surveys is much larger than the 
fracture size and therefore fractures cannot be imaged directly in most cases. 
Hydrothermal alteration may also decrease velocities [Unruh et al., 2001]. In some cases 
where a clear fluid boundary exists, either near the surface or in a vapor dominated 
reservoir it may be possible to image the boundary. These effects are difficult to detect 
using standard interpretation based on amplitudes and attributes are one possible 
approach to extracting the information. Other approaches may be possible such as 
inverting for acoustic impedance for lithology, azimuthal variations in amplitude to infer 
fractures, or amplitude versus offset may be useful. The use of 3D component data for 
attenuation or anisotropy may be applicable. Here, motivated in part by successes 
reported in the petroleum industry, we test the use of seismic attributes to reduce the risk 
associated with drilling additional production wells.  
 
As a test-bed, we will use a dataset of 3D seismic reflection data and ancillary well data 
from the Walker Ranch (adjacent to Raft River) geothermal area, Idaho. The 3D dataset 
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from Walker Ranch was acquired and processed by Optim, Inc under contract to Agua 
Caliente. An area of approximately 7 square miles was covered (Figures 1 and 2). The 
intent is to find an attribute, or combination of attributes, that allows specific parameters 
relevant to geothermal production to be estimated throughout the volume of the survey. 
This will allow better estimates of the expected geothermal production at a specific site 
prior to drilling. 
 
The Raft River/Walker Ranch area has been the site of geothermal investigation since 
1974. It is located in southern Idaho and is a large, moderate temperature resource (135-
146 C) that produces from fractured Precambrian basement and overlying Tertiary 
sediments (e.g. Jones et al., 2011; en.openei.org, 2015; Figure 1). Current production 
from Raft River is about 11 Mw from four production wells. The area is currently the site 
of an enhanced geothermal system demonstration project. As part of this project 
microseismicity has been recorded from a local network. In this paper we refer to the 
producing geothermal area as Raft River and the adjacent area, which is the focus of this 
investigation, as Walker Ranch.  
 
As we are primarily focused on testing the concept in general, proprietary details specific 
to the Walker Ranch prospect (e.g, exact locations of cross-sections) that are not relevant 
to the overall process flow will be omitted. This allows the broad dissemination of 
information. This report covers the work accomplished during the second year of funding 
(FY15). Due to a 5 month delay in funding sent to LLNL, a no cost extension was 
requested (from 9/30/15 to 2/30/16) with the goal of presenting at the Stanford 
Geothermal Workshop. 
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Figure 1. Cross-section of Walker Ranch seismic data with geological cross at upper left 
and map showing location of seismic section (black line) and geological cross section 
(red line). Note that the geological cross section and the seismic section are roughly 
perpendicular to each other. Colored lines represent well tracks and orange dots are 
micro-earthquakes. 
 
 

 
 

Figure 2. 3D view of 2D seismic amplitude sections overlaid on a 3D cube of attributes. 
Red lines are well tracks. 
 
1.1.2 Review of work accomplished in the first year of funding 
 
In the first year of work, seismic attributes were calculated on the 3D datasets using both 
newly developed code and commercial (Petrel) software. In addition, well cuttings were 
analyzed using X-ray diffraction and petrological analysis. The purpose of the well 
cuttings analysis was to map the lithology in the well for comparison to the seismic 
attributes.  The results include automated mapping algorithms of the Walker Ranch 
datasets using attributes derived from the 3D data. Synthetics were generated using finite 
difference algorithms.  
 
1.1.3 Review of work accomplished this year 
 
A new set of tasks were funded in the FY15 AOP to LLNL, Agua Caliente, and Optim, 
inc. These tasks included data compilation, neural net analysis, validation, examination of 
micro-earthquakes and seismic data, and a report. Unfortunately, the majority of funding 
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did not arrive until February, 2015 (approximately 5 months after the planned start date 
in October, 2014). This led to a delay in sub-contracts and milestones, which is being 
accommodated by a no cost extension until February 2016.   
 
A presentation at the Stanford geothermal workshop was made in February 2015 and a 
peer review was presented in May 2015. A major problem was the fact that much of the 
data is proprietary and could not be presented. In general, the idea seemed reasonable to 
most reviewers but they were unable to properly comment on results due to the 
proprietary nature of the data. 
 
1.1.4 Data compilation and neural net analysis 
 
These tasks were undertaken largely by Optimc, Inc, and Agua Caliente. Optim 
developed a set of neural net analysis software. The goal is to find an algorithm that will 
automatically search through attributes and find patterns that will predict permeability in 
wells. Permeability index values were extracted from data from the three wells drilled by 
Agua Caliente at Walker Ranch and used as the training set. The permeability as a 
function of depth was estimated on flow records, drilling history, and losses. It is 
expressed as an index that seeks to rank the different zones within a well with respect to 
each other. Four different neural net approaches were tested on 11 attributes derived from 
the 3D data. The shallow subsurface (upper 1900 feet) was excluded from the search. The 
input attribute file consisted of 2.2 million points and the permeability index (PI) file 
contained 2,069 points. Validation was accomplished by “leave one out”, i.e. known 
permeability index values that were not used in the neural net analysis were predicted 
based on the attributes. 
 
The four approaches were feed forward neural network with resilient back propagation 
(Reedmiller and Braun, 1993; Brieman, 1996); generalized regression with Gaussian 
layer (Specht, 1991), radial basis functions with Gaussian functions (Broomhead and 
Lowe, 1988), and support vector machine with Gaussian kernel (1997). The support 
vector machine algorithm was the fastest and most efficient. 
 
The results were mixed. In the first result the correlation between the expected and 
observed values was  0.78 with a standard error of 0.25, which is not very good. After 
smoothing the input attributes, the correlation increased to 0.95 with a standard error 0.11 
(Figure 4 and 5). Analysis suggested that the observed permeability index values varied 
greatly over short spatial distances, which made fitting to more smoothly varying 
attributes difficult. 
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Figure 4. Plot of the difference between observed and predicted permeability index 
values using the ‘leave one out’ cross-validation. Large deviations exist even after data 
smoothing. 

 
Figure 5. A depth slice showing the predicted permeability and the training points (open 
red squares). The solid red square with a circle shows a point where the predicted 
permeability matches the observed permeability. 
 
The second approach used commercial software (Petrel) to identify permeable zones 
using attributes and other data such as temperature and resistivity.  Multiple combinations 
of parameters were tried. In general, most of the models generated a fairly good fit to the 
training set (Figure 6). Unfortunately, while the correlation statistic indicated a good fit, 
examination of the results from a geological perspective did not match expectations. For 
example, one case where the fit was good showed a series of lateral horizons where the 
permeability appeared to follow a specific set of reflectors and not the expected vertical 
faults in a hydrothermal reservoir. 
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Figure 6. Cross plot of training data versus model.  
 
Validation was also conducted using a ‘leave one out’ strategy. This showed a poor 
match in general. A disadvantage of this approach is that omitting some of the training 
points reduces the overall fit. The two approaches, Optim and Petrel, were compared 
using the same input data. Results were similar but differed in detail away from the 
training set. This may be due to subtle differences in implementation of the two codes.  
 
Overall, the key finding is that the neural net is capable of finding relationships between 
attributes that would be impossible to find manually but we have not yet found a set of 
inputs that predict permeability in a robust fashion. 
 
One area that needs improvement is the estimate of permeability index (PI). The current 
estimate used well production and test data. While PI is usually a good estimate of overall 
well production, for this study we need PI as a function of depth, which requires some 
approximations. As this data is the key training data, any inaccuracies would lead to poor 
results. We are now re-evaluating our procedure to estimate PI. 
 
1.1.5 Micro-earthquakes and reflection seismic 
 
Another use of the 3D data is to use the amplitude images to examine structure. In 
particular, it is of interest to see if the microearthquake locations correspond to clear 
structural features in the 3D seismic data. Using locations (x,y, and z) from the LBL 
catalog provided by E. Majer, the microearthquakes (MEQ) were plotted on the depth 
migrated seismic reflection data. 
 
MEQ were plotted on series of horizontal and vertical slices (Figures 7 and 8). The 
basement interface is visible as a strong reflector and it is clear that MEQ occur below the 
reflector. Although the MEQ appear to occur along a roughly linear fashion, no obvious 
discontinuity is visible in the horizontal section. The vertical sections show some slightly 
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discontinuous features that might be faults cutting the section at high angle, but a single 
distinct feature is not obvious. 
 
This result is slightly surprising and may indicate that seismogenic faults are challenging 
to identify in geothermal areas using reflection seismic data. Alternatively, it may be that 
the relative locations between the MEQ and depth migrated section differ, as both were 
determined using different velocity models. One way to address this is to use a commaon 
velocity model but we have not yet done this.  
 

 
 
Figure 7a. Depth slice, showing MEQ. 
 
 

 
Figure 7b. Vertical slice, with MEQ within 250 feet shown. 
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Figure 8a. Depth slice (1000’ below Figure 7a). MEQ in red.  
 

 
Figure 8b. MEQ within 250 feet of the section. 
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1.1.6 Conclusions 
The neural net analysis indicates that the method is effective at finding relationships 
between attributes and permeability that are not obvious otherwise, but a clear 
relationship that matches the geology and is effective at predicting permeability has not 
yet been discovered. One possible reason for the difficulty is the permeability estimates 
used to train the neural network, as errors in the input dataset would cause significant 
problems with correlation. Preliminary examination of microearthquake locations and 3D 
seismic data show that the earthquakes do not appear to correlate well with significant 
features in the seismic data.  
 

1.1.7 Milestones 
 
 
Five milestones were planned. 

1) Milestone 1. Incorporation of all geophysical data and permeability data into 
model. Complete. 

2) Milestone 2. Calculation of attributes using neural net and application to 3d data. 
Complete. 

3) Milestone 3. MEQ locations with respect to seismic and geology. Do they match 
1) structural boundaries or 2) other interfaces?. Complete.  

4) Milestone 4. (SMART) Final report and evaluation of usefulness of technique - 
can we estimate permeability? In progress, 50% complete; continuing into 
FY15 (no additional cost). 
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